phần 2

2.2K 3 0
                                    

Một số bài toán quy hoạch động kinh điển

Nguyễn Thanh Tùng

Chúng ta đều biết rằng điều khó nhất để giải một bài toán quy hoạch động (QHĐ) là biết rằng nó là một bài toán QHĐ và tìm được công thức QHĐ của nó. Rất khó nếu ta mò mẫm từ đầu, nhưng nếu chúng ta đưa được bài toán cần giải về một bài toán QHĐ kinh điển thì sẽ dễ dàng hơn nhiều. Do đó, tìm hiểu mô hình, công thức và cách cài đặt những bài toán QHĐ kinh điển là một việc rất cần thiết. Trong bài báo này, tôi xin giới thiệu một số bài toán QHĐ kinh điển và những biến thể của chúng. Bài báo chủ yếu tập trung vào giới thiệu mô hình, công thức và một số gợi ý trong cài đặt chứ không đi chi tiết vào việc phát biểu bài toán, mô tả input/output, chứng minh công thức hay viết chương trình cụ thể. Mặc dù rất muốn minh hoạ cho các bài toán bằng các hình vẽ trực quan nhưng khuôn khổ trang báo có hạn nên tôi không thể đưa vào. Hơn nữa phần gợi ý cài đặt chỉ có gợi ý cho phần tính bảng phương án, phần lần vết cần các cấu trúc dữ liệu và những kĩ thuật xử lí phức tạp hơn nên tôi xin trình bày trong một bài báo khác. Rất mong nhận được góp ý của bạn đọc để nội dung được hoàn thiện hơn. Các góp ý xin gửi đến địa chỉ email TungNT31@yahoo.com.

I. Dãy con đơn điệu dài nhất
1. Mô hình
Cho dãy a1,a2,..an. Hãy tìm một dãy con tăng có nhiều phần tử nhất của dãy.
2. Công thức QHĐ
Gọi L(i) là độ dài dãy con tăng dài nhất, các phần tử lấy trong miền từ a1 đến ai và phần tử cuối cùng là ai.
Ta có công thức QHĐ để tính L(i) như sau:
L(1) = 1
L(i) = max(1, L(j)+1 với mọi phần tử j: 0 < j < i va' aj ≤ ai).
3. Cài đặt
Bảng phương án là một mảng một chiều L để lưu trữ các giá trị của hàm QHĐ L(i). Đoạn chương trình tính các giá trị của mảng L như sau:
for i := 1 to n do begin
L[i] := 1;
for j:=1 to i - 1 do
if (a[j]<=a[i]) and (L[i]
L[i]:=L[j]+1;
end;
Như vậy chi phí không gian của bài toán là O(n), chi phí thời gian là O(n2). Có một phương pháp cài đặt tốt hơn so với phương pháp trên, cho chi phí thời gian là O(nlogn), bạn đọc có thể tham khảo trong bài báo của thầy Trần Đỗ Hùng trên tạp chí số tháng 10 năm 2004.

4. Một số bài toán khác
Bài toán dãy con đơn điệu tăng dài nhất có biến thể đơn giản nhất là bài toán dãy con đơn điệu giảm dài nhất, tuy nhiên chúng ta có thể coi chúng như là một. Sau đây là một số bài toán khác.
a) Bố trí phòng họp
Có n cuộc họp, cuộc họp thứ i bắt đầu vào thời điểm ai và kết thúc ở thời điểm bi. Do chỉ có một phòng hội thảo nên 2 cuộc họp bất kì sẽ được cùng bố trí phục vụ nếu khoảng thời gian làm việc của chúng chỉ giao nhau tại đầu mút. Hãy bố trí phòng họp để phục vụ được nhiều cuộc họp nhất.
Hướng dẫn:
Sắp xếp các cuộc họp tăng dần theo thời điểm kết thúc (bi). Thế thì cuộc họp i sẽ bố trí được sau cuộc họp j nếu và chỉ nếu j < i va' bj ≤ ai. Yêu cầu bố trí được nhiều cuộc họp nhất có thể đưa về việc tìm dãy các cuộc họp dài nhất thoả mãn điều kiện trên.
b) Cho thuê máy
Trung tâm tính toán hiệu năng cao nhận được đơn đặt hàng của n khách hàng. Khách hàng i muốn sử dụng máy trong khoảng thời gian từ ai đến bi và trả tiền thuê là ci. Hãy bố trí lịch thuê máy để tổng số tiền thu được là lớn nhất mà thời gian sử dụng máy của 2 khách hàng bất kì được phục vụ đều không giao nhau (cả trung tâm chỉ có một máy cho thuê).
Hướng dẫn:
Tương tự như bài toán a), nếu sắp xếp các đơn đặt hàng theo thời điểm kết thúc, ta sẽ đưa được bài toán b) về bài toán tìm dãy con có tổng lớn nhất. Bài toán này là biến thể của bài toán tìm dãy con tăng dài nhất, ta có thể cài đặt bằng đoạn chương trình như sau:
for i:=1 to n do
begin
L[i]:=c[i];
for j:=1 to i -1 do
if (b[j]<=a[i]) and (L[i]
L[i]:=L[j]+c[i];
end;
c) Dãy tam giác bao nhau
Cho n tam giác trên mặt phẳng. Tam giác i bao tam giác j nếu 3 đỉnh của tam giác j đều nằm trong tam giác i (có thể nằm trên cạnh). Hãy tìm dãy tam giác bao nhau có nhiều tam giác nhất.
Hướng dẫn:
Sắp xếp các tam giác tăng dần về diện tích. Khi đó tam giác i sẽ bao tam giác j nếu j < i và 3 đỉnh của j nằm trong i. Từ đó có thể đưa về bài toán tìm dãy tăng dài nhất.
Việc kiểm tra điểm M có nằm trong tam giác ABC không có thể dựa trên phương pháp tính diện tích: điểm M nằm trong nếu S(ABC) = S(ABM) + S(ACM) + S(BCM).
Bài toán có một số biến thể khác như tìm dãy hình tam giác, hình chữ nhật bao nhau có tổng diện tích lớn nhất.
d) Dãy đổi dấu Cho dãy a1, a2,... an. Hãy dãy con đổi dấu dài nhất của dãy đó. Dãy con con đổi dấu ai1,ai2,... aik phải thoả mãn các điều kiện sau:
ai1 <Ai2 > ai3 <... hoặc i1 > ai2 < a i3 >... các chỉ số phải cách nhau ít nhất L: i2 - i1 ≥ L, i3 -i2 ≥ L...
chênh lệch giữa 2 phần tử liên tiếp nhỏ hơn U: |ai1 - ai2| ≤ U, |ai2 - ai3| ≤ U...
Hướng dẫn:
Gọi L(i) là số phần tử của dãy con đổi dấu có phần tử cuối cùng là ai và phần tử cuối cùng lớn hơn phần tử đứng trước. Tương tự, P(i) là số phần tử của dãy con đổi dấu có phần tử cuối cùng là ai và phần tử cuối cùng nhỏ hơn phần tử đứng trước. Ta dễ dàng suy ra:
L(i) = max(1, P(j)+1): j ≤ i - L và ai - U ≤ aj < ai.
P(i) = max(1, L(j)+1): j ≤ i - L và ai < aj ≤ ai + U.

II. Chia kẹo
1. Mô hình
Cho dãy a1, a2,.. an. Tìm một dãy con của dãy đó có tổng bằng S.
2. Công thức
Đặt L(i,t)=1 nếu có thể tạo ra tổng t từ một dãy con của dãy gồm các phần tử a1,a2,..ai. Ngược lại thì L(i,t)=0. Nếu L(n,S)=1 thì đáp án của bài toán trên là 'có'.
Ta có thể tính L(i,t) theo công thức: L(i,t) = 1 nếu L(i - 1,t)=1 hoặc L(i-1,t - a[i])=1.
3. Cài đặt
Nếu áp dụng luôn công thức trên thì ta cần dùng bảng phương án hai chiều. Ta có thể nhận xét rằng để tính dòng thứ i, ta chỉ cần dòng i -1. Bảng phương án khi đó chỉ cần 1 mảng 1 chiều L[0..S] và được tính như sau:
L[t]:=0; L[0]:=1;
for i := 1 to n do
for t := S downto a[i] do
if (L[t]=0) and (L[t - a[i]]=1) then L[t]:=1;
Dễ thấy chi phí không gian của cách cài đặt trên là O(m), chi phí thời gian là O(nm), với m là tổng của n số. Bạn đọc hãy tự kiểm tra xem tại sao vòng for thứ 2 lại là for downto chứ không phải là for to.
4. Một số bài toán khác
a) Chia kẹo
Cho n gói kẹo, gói thứ i có ai viên. Hãy chia các gói thành 2 phần sao cho chênh lệch giữa 2 phần là ít nhất.
Hướng dẫn: Gọi T là tổng số kẹo của n gói. Chúng ta cần tìm số S lớn nhất thoả mãn:
S ≤ T/2.
Có một dãy con của dãy a có tổng bằng S. Khi đó sẽ có cách chia với chênh lệch 2 phần là T - 2S là nhỏ nhất và dãy con có tổng bằng S ở trên gồm các phần tử là các gói kẹo thuộc phần thứ nhất. Phần thứ hai là các gói kẹo còn lại.

b) Market (Olympic Balkan 2000)
Người đánh cá Clement bắt được n con cá, khối lượng mỗi con là ai, đem bán ngoài chợ. ở chợ cá, người ta không mua cá theo từng con mà mua theo một lượng nào đó. Chẳng hạn 3 kg, 5kg...
Ví dụ: có 3 con cá, khối lượng lần lượt là: 3, 2, 4. Mua lượng 6 kg sẽ phải lấy con cá thứ 2 và và thứ 3. Mua lượng 3 kg thì lấy con thứ nhất. Không thể mua lượng 8 kg.
Nếu bạn là người đầu tiên mua cá, có bao nhiêu lượng bạn có thể chọn?
Hướng dẫn:

Thực chất bài toán là tìm các số S mà có một dãy con của dãy a có tổng bằng S. Ta có thể dùng phương pháp đánh dấu của bài chia kẹo ở trên rồi đếm các giá trị t mà L[t]=1.
c) Điền dấu
Cho n số tự nhiên a1,a2,...,an. Ban đầu các số được đặt liên tiếp theo đúng thứ tự cách nhau bởi dấu '?': a1?a2?...?an. Cho trước số nguyên S, có cách nào thay các dấu '?' bằng dấu + hay dấu - để được một biểu thức số học cho giá trị là S không?
Hướng dẫn : Đặt L(i,t)=1 nếu có thể điền dấu vào i số đầu tiên và cho kết quả bằng t. Ta có công thức sau để tính L:
L(1,a[1]) =1.
L(i,t)=1 nếu L(i - 1,t+a[i])=1 hoặc L(i - 1,t - a[i])=1.
Nếu L(n,S)=1 thì câu trả lời của bài toán là có. Khi cài đặt, có thể dùng một mảng 2 chiều (lưu toàn bộ bảng phương án) hoặc 2 mảng một chiều (để lưu dòng i và dòng i - 1). Chú ý là chỉ số theo t của các mảng phải có cả phần âm (tức là từ - T đến T, với T là tổng của n số), vì trong bài này chúng ta dùng cả dấu - nên có thể tạo ra các tổng âm.
Bài này có một biến thể là đặt dấu sao cho kết quả là một số chia hết cho k. Ta có thuật giải tương tự bài toán trên bằng cách thay các phép cộng, trừ bằng các hép cộng và trừ theo môđun k và dùng mảng đánh dấu với các giá trị từ 0 đến k - 1 (là các số dư có thể có khi chia cho k). Đáp số của bài toán là L(n,0).
d) Expression (ACM 10690)
Cho n số nguyên. Hãy chia chúng thành 2 nhóm sao cho tích của tổng 2 nhóm là lớn nhất.
Hướng dẫn : Gọi T là tổng n số nguyên đó. Giả sử ta chia dãy thành 2 nhóm, gọi S là tổng của một nhóm, tổng nhóm còn lại là T - S và tích của tổng 2 nhóm là S*(T - S). Bằng phương pháp đánh dấu ta xác định được mọi số S là tổng của một nhóm (như bài Market) và tìm số S sao cho S*(T - S) đạt max.

III. Xâu con chung dài nhất
1. Mô hình
Cho 2 xâu X,Y. Hãy tìm xâu con của X và của Y có độ dài lớn nhất.
2. Công thức QHĐ
Gọi L(i,j) là độ dài xâu con chung dài nhất của xâu X(i) gồm i kí tự phần đầu của X (X(i)= X[1..i]) và xâu Y(j) gồm j kí tự phần đầu của Y (Y(j) =Y[1..j]).
Ta có công thức quy hoạch động như sau:
L(0,j)=L(i,0)=0.
L(i,j) = L(i - 1,j - 1)+1 nếu X[i] = Y[j].
L(i,j) = max(L(i - 1,j), L(i,j - 1)) nếu X[i] ≠ Y[j].
3. Cài đặt
Bảng phương án là một mảng 2 chiều L[0..m,0..n] để lưu các giá trị của hàm QHĐ L(i,j). Đoạn chương trình cài đặt công thức QHĐ trên như sau:
for i:=0 to m do L[i,0]:=0;
for j:=0 to n do
L[0,j]:=0;
for i:=1 to m do
for j:=1 to n do
if X[i]=Y[j] then
L[i,j]:=L[i - 1,j - 1]+1
else
L[i,j]:=max(L[i - 1,j],L[i,j - 1]]);
Như vậy chi phí không gian của bài toán là O(n2), chi phí thời gian là O(n2). Có một phương pháp cài đặt tốt hơn, chỉ với chi phí không gian O(n) dựa trên nhận xét sau: để tính ô L[i,j] của bảng phương án, ta chỉ cần 3 ô L[i - 1,j-1],L[i-1,j] và L[i,j-1]. Tức là để tính dòng L[i] thì chỉ cần dòng L[i -1]. Do đó ta chỉ cần 2 mảng 1 chiều để lưu dòng vừa tính (P) và dòng đang tính (L) mà thôi. Cách cài đặt mới như sau:
for j:=0 to n do
P[j]:=0;
for i:=1 to m do
begin
L[0] := 0;
for j:=1 to n do
if X[i]=Y[j] then
L[i,j]:=P[j - 1]+1
else L[i,j]:=max(P[j], L[j -1]);
P := L;
end;
4. Một số bài toán khác
a) Bắc cầu
Hai nước Anpha và Beta nằm ở hai bên bờ sông Omega, Anpha nằm ở bờ bắc và có M thành phố được đánh số từ 1 đến m, Beta nằm ở bờ nam và có N thành phố được đánh số từ 1 đến n (theo vị trí từ đông sang tây). Mỗi thành phố của nước này thường có quan hệ kết nghĩa với một số thành phố của nước kia. Để tăng cường tình hữu nghị, hai nước muốn xây các cây cầu bắc qua sông, mỗi cây cầu sẽ là nhịp cầu nối 2 thành phố kết nghĩa. Với yêu cầu là các cây cầu không được cắt nhau và mỗi thành phố chỉ là đầu cầu cho nhiều nhất là một cây cầu, hãy chỉ ra cách bắc cầu được nhiều cầu nhất.
Hướng dẫn:
Gọi các thành phố của Anpha lần lượt là a1, a2,...am; các thành phố của Beta là b1,b2,...bn. Nếu thành phố ai và bj kết nghĩa với nhau thì coi ai'bằng' bj. Để các cây cầu không cắt nhau, nếu ta đã chọn cặp thành phố (ai, bj) để xây cầu thì cặp tiếp theo phải là cặp (au,bv) sao cho u>i và v>j. Như vậy các cặp thành phố được chọn xây cầu có thể coi là một dãy con chung của hai dãy a và b.
Bài toán của chúng ta trở thành bài toán tìm dãy con chung dài nhất, ở đây hai phần tử 'bằng' nhau nếu chúng có quan hệ kết nghĩa.
b) Biến đổi xâu
Cho 2 xâu X,Y. Có 3 phép biến đổi với xâu X: chèn 1 kí tự, thay thế một kí tự hoặc xoá một kí tự. Hãy tìm số ít nhất các phép biến đổi để biến xâu X thành xâu Y.
Hướng dẫn:
Gọi F(i,j) là số phép biến đổi ít nhất để biến xâu X(i) gồm i kí tự phần đầu của X (X(i)= X[1..i]) thành xâu Y(j) gồm j kí tự phần đầu của Y (Y(j) =Y[1..j]). Dễ thấy F(0,j)=j và F(i,0)=i.
Nếu X[i]=Y[j] thì ta chỉ phải biến đổi xâu X(i-1) thành xâu Y(j-1). Do đó F(i,j)=F(i-1,j-1).
Ngược lại, ta có 3 cách biến đổi:
- Xoá kí tự X[i] và biến đổi xâu X(i-1) thành Y(j). Khi đó F(i,j)=F(i-1,j)+1.
- Thay thế X[i] bởi Y[j] và biến đổi X(i-1) thành Y(j-1). Khi đó F(i,j)=F(i-1,j-1)+1.
- Chèn Y[j] vào X(i) và biến đổi X(i) thành Y(j-1). Khi đó F(i,j)=F(i,j-1)+1.
Tổng kết lại, ta có công thức QHĐ:
F(0,j)=j
F(i,0)=i
F(i,j) =F(i - 1,j - 1) nếu X[i] = Y[j].
F(i,j) = min(F(i - 1,j),F(i,j - 1),F(i - 1,j - 1))+1 nếu X[i] ≠ Y[j].
c) Palindrom (IOI 2000) Một xâu gọi là xâu đối xứng (palindrom) nếu xâu đó đọc từ trái sang phải hay từ phải sang trái đều như nhau. Cho một xâu S, hãy tìm số kí tự ít nhất cần thêm vào S để S trở thành xâu đối xứng.
Hướng dẫn:
Bài toán này có một công thức QHĐ như sau:
Gọi L(i,j) là số kí tự ít nhất cần thêm vào xâu con S[i..j] của S để xâu đó trở thành đối xứng. Đáp số của bài toán sẽ là L(1,n) với n là số kí tự của S. Ta có công thức sau để tính L(i,j):
L(i,i)=0.
L(i,j)=L(i+1,j - 1) nếu S[i]=S[j]
L(i,j)=max(L(i+1,j), L(i,j - 1)) nếu S[i] ≠ S[j]
Bạn đọc dễ dàng có thể kiểm chứng công thức đó. Ta có thể cài đặt trực tiếp công thức đó bằng phương pháp đệ quy có nhớ. Tuy nhiên khi đó chi phí không gian là O(n2). Có một phương pháp cài đặt tiết kiệm hơn (bạn đọc có thể tham khảo ở bài báo trên của thầy Trần Đỗ Hùng), tuy nhiên phương pháp đó khá phức tạp.
Ta có thuật toán đơn giản hơn như sau:
Gọi P là xâu đảo của S và T là xâu con chung dài nhất của S và P. Khi đó các kí tự của S không thuộc T cũng là các kí tự cần thêm vào để S trở thành đối xứng. Đáp số của bài toán sẽ là n - k, với k là độ dài của T. Ví dụ: S=<b>edbabcd, xâu đảo của S là P=<b>dcbabde. Xâu con chung dài nhất của S và P là T=<b>dbabd. Như vậy cần thêm 2 kí tự là ec vào để S trở thành xâu đối xứng.

Một số bài toán QHĐNơi câu chuyện tồn tại. Hãy khám phá bây giờ