BLACK HOLE

51 3 1
                                    

A black hole is a mathematically defined region of spacetime exhibiting such a stronggravitational pull that no particle orelectromagnetic radiation can escape from it.The theory of general relativity predicts that a sufficiently compact mass can deformspacetime to form a black hole.The boundary of the region from which no escape is possible is called the event horizon. Although crossing the event horizon has enormous effect on the fate of the object crossing it, it appears to have no locally detectable features. In many ways a black hole acts like an ideal black body, as it reflects no light.Moreover, quantum field theory in curved spacetime predicts that event horizons emit Hawking radiation, withthe same spectrum as a black body of a temperature inversely proportional to its mass. This temperature is on the order of billionths of a kelvin for black holes of stellar mass, making it essentially impossible to observe.

Objects whose gravitational fields are too strong for light to escape were first considered in the 18th century by John Michell and Pierre-Simon Laplace. The first modern solution of general relativity that would characterize a black hole was found byKarl Schwarzschild in 1916, although its interpretation as a region of space from which nothing can escape was first published by David Finkelstein in 1958. Long considered a mathematical curiosity, it was during the 1960s that theoretical work showed black holes were a generic prediction of general relativity. The discovery of neutron starssparked interest in gravitationally collapsedcompact objects as a possible astrophysical reality.

Black holes of stellar mass are expected to form when very massive stars collapse at the end of their life cycle. After a black hole has formed, it can continue to grow by absorbing mass from its surroundings. By absorbing other stars and merging with other black holes, supermassive black holes of millions of solar masses (M) may form. There is general consensus that supermassive black holes exist in the centers of most galaxies.

Despite its invisible interior, the presence of a black hole can be inferred through its interaction with other matter and withelectromagnetic radiation such as visible light. Matter falling onto a black hole can form an accretion disk heated by friction, forming some of the brightest objects in the universe. If there are other stars orbiting a black hole, their orbit can be used to determine its mass and location. Such observations can be used to exclude possible alternatives (such as neutron stars). In this way, astronomers have identified numerous stellar black hole candidates in binary systems, and established that the radio source known as Sgr A*, at the core of our own Milky Way galaxy, contains a supermassive black hole of about 4.3 millionM.
HISTORY
The idea of a body so massive that even light could not escape was first put forward byJohn Michell in a letter written to Henry Cavendish in 1783 of the Royal Society:

If the semi-diameter of a sphere of the same density as the Sun were to exceed that of the Sun in the proportion of 500 to 1, a body falling from an infinite height towards it would have acquired at its surface greater velocity than that of light, and consequently supposing light to be attracted by the same force in proportion to its vis inertiae, with other bodies, all light emitted from such a body would be made to return towards it by its own proper gravity.

-John Michell

In 1796, mathematician Pierre-Simon Laplacepromoted the same idea in the first and second editions of his book Exposition du système du Monde (it was removed from later editions).Such "dark stars" were largely ignored in the nineteenth century, since it was not understood how a massless wave such as light could be influenced by gravity.

Cosmos The Cosmic JourneyWhere stories live. Discover now