How massive parallelism lifts the brain's performance above that of AI.
The brain is complex; in humans it consists of about 100 billion neurons, making on the order of 100 trillion connections. It is often compared with another complex system that has enormous problem-solving power: the digital computer. Both the brain and the computer contain a large number of elementary units—neurons and transistors, respectively—that are wired into complex circuits to process information conveyed by electrical signals. At a global level, the architectures of the brain and the computer resemble each other, consisting of largely separate circuits for input, output, central processing, and memory.1
Which has more problem-solving power—the brain or the computer? Given the rapid advances in computer technology in the past decades, you might think that the computer has the edge. Indeed, computers have been built and programmed to defeat human masters in complex games, such as chess in the 1990s and more recently Go, as well as encyclopedic knowledge contests, such as the TV show Jeopardy! As of this writing, however, humans triumph over computers in numerous real-world tasks—ranging from identifying a bicycle or a particular pedestrian on a crowded city street to reaching for a cup of tea and moving it smoothly to one's lips—let alone conceptualization and creativity.
So why is the computer good at certain tasks whereas the brain is better at others? Comparing the computer and the brain has been instructive to both computer engineers and neuroscientists. This comparison started at the dawn of the modern computer era, in a small but profound book entitled The Computer and the Brain, by John von Neumann, a polymath who in the 1940s pioneered the design of a computer architecture that is still the basis of most modern computers today.2 Let's look at some of these comparisons in numbers (Table 1).
Oops! This image does not follow our content guidelines. To continue publishing, please remove it or upload a different image.
The computer also has huge advantages over the brain in the precision of basic operations. The computer can represent quantities (numbers) with any desired precision according to the bits (binary digits, or 0s and 1s) assigned to each number. For instance, a 32-bit number has a precision of 1 in 232 or 4.2 billion. Empirical evidence suggests that most quantities in the nervous system (for instance, the firing frequency of neurons, which is often used to represent the intensity of stimuli) have variability of a few percent due to biological noise, or a precision of 1 in 100 at best, which is millionsfold worse than a computer.5
A pro tennis player can follow the trajectory of a ball served at a speed up to 160 mph.
The calculations performed by the brain, however, are neither slow nor imprecise. For example, a professional tennis player can follow the trajectory of a tennis ball after it is served at a speed as high as 160 miles per hour, move to the optimal spot on the court, position his or her arm, and swing the racket to return the ball in the opponent's court, all within a few hundred milliseconds. Moreover, the brain can accomplish all these tasks (with the help of the body it controls) with power consumption about tenfold less than a personal computer. How does the brain achieve that? An important difference between the computer and the brain is the mode by which information is processed within each system. Computer tasks are performed largely in serial steps. This can be seen by the way engineers program computers by creating a sequential flow of instructions. For this sequential cascade of operations, high precision is necessary at each step, as errors accumulate and amplify in successive steps. The brain also uses serial steps for information processing. In the tennis return example, information flows from the eye to the brain and then to the spinal cord to control muscle contraction in the legs, trunk, arms, and wrist.