BERMULA sekali dalam buku sekolah menengah, kita bertemu dengan definisi geometri kira-kira seperti berikut: ilmu yang mempelajari sifat bentuk tiga dimensi, bidang, garis, dan titik. Sifat yang dipakai dan dipelajari dari badan, tentulah sifat yang berkenaan dengan ilmu geometri saja, bukan yang berkenaan dengan ilmu lainnya, misalnya ilmu alam. Geometri tidak memperdulikan zat berat, panas, dan energi suatu bentuk tiga dimensi.
Satu per satunya didefinsikan pula. Beginilah dipastikan :
Isi adalah bagian dari ruang alam yang berbatas ke semua penjuru.
Bidang adalah batas massa.
Garis adalah batas bidang.
Titik adalah batas garis.Marilah kita periksa definisi di atas ini dengan melaksanakan pengetahuan ktia tentang definisi.
Isi, katanya, ialah sebagian dari ruang alam, space. Jadi isi masuk golongan, kelas yang lebih umum, yaitu “sebagian ruang alam”. Sebagian itu bukan berarti seluruhnya dari ruang alam yang luas itu. Tetapi 1 m³ udara, juga masuk golongan “sebagian ruang alam”. Kita tahu badan, seperti kerbau, manusia dsb, bukan 1m³ udara yang juga sebagian dari ruang alam. Jadi definisi di atas mesti dipagari, karena terlampau luas. Pagarnya, adalah perbedaan badan dengan barang lain yang sama golongannya.
Anak kalimat “yang berbatas ke semua penjuru” inilah yang menjadi pagar. Isi yang masuk golongan “sebagian dari ruang alam” itu harus berbatas ke semua penjuru. Baik di atas maupun di bawah. Di kiri maupun di kanan. di depan atau di belakang. Isi itu seperti peti dsb. Mempunyai batas bidang. Sedangkan udara yang juga termasuk golongan “sebagian dari ruang alam” tak terbatasi oleh bidang. Seterusnya, semua isi bernyawa atau tidak ialah sebagian dari ruang alam yang berbatas ke semua penjuru. Dan sebaliknya, sebagian dari ruang alam yang berbatas ke semua penjuru ialah isi.
Jadi definisi tentang isi cukup jitu. Golongan dan perbedaan adalah essential attributes. Pula definisi itu pendek, tak berputar-putar, umum, tak mengandung ibarat, kata gaib, dan tidak pula negatif. Pendek kata, definisi itu sempurna menurut sains.
Seterusnya, bidang ialah batas isi.
Begitulah definisi tentang bidang, garis, dan titik contoh dengan sains, jadi sainstifik. Tetapi akan terlalu panjang kalau saya mesti periksa satu persatunya. Terserah kepada pembaca untuk memeriksanya sendiri. untuk menerapkan yang sudah dipelajari.
Sesudah menerangkan tentang geometri dan bukti yang dipakainya, sesudah mengingatkan bahwa definisi itu cocok dengan definisi pertama yang saya kemukakan tentang sains, yaitu akurat, maka saya ingatkan definisi kedua dan ketiga. Sains itu ialah organization of facts, penyusunan segala bukti dan simplification by generalisation, penyederhanaan dengan generalisasi bukti. Kedua definisi ini pun kena mengena, isi mengisi dan keduanya berdasar atas facts, bukti.Organisasi atau generalisasi dalam matematika berupa teori dan dalam ilmu bintang atau ilmu alam berupa law atau hukum. Kita bisa dengar teorema Fermat dan Euler, Binomium of Newton, Laws of Motion (Hukum Gerak) Newton, Daltons Law (Hukum Kimia Dalton), dll. Teori atau hukum tadi keduanya hasil dari penyusunan dan generalisasi beberapa bukti, berdasarkan atas bukti. Tetapi bukti yang kita pakai dalam geometri, seperti isi, bidang, garis, dan titik berlainan dengan bukti yang diladeni oleh ahli bintang, tumbuhan, binatang, manusia, dan zat.
Isi bisa kita pastikan dengan panca indera kita, tetapi bidang, garis, dan titik cuma bisa kita “hampiri” keadaanya dengan gambaran. Bidang itu tidak bisa berdiri sendiri. Bidang peti tidak bisa kita potong jadi peti tadi. Kalau kita potong berapapun tipisnya, maka jadilah badanlah dia dan mengambil “sebagian dari ruang alam”. Selain itu, maka mesti kita pikirkan sifat yang lekat pada bidang yakni dua dimensi, dua ukuran, dua besaran: panjang dan lebar. Sedang badan itu mempunyai tiga dimensi : panjang, lebar, dan tinggi.
Garis ialah batas bidang. Garis hanya mempunyai satu dimensi, yakni panjang. Jadi ia tak punya lebar. Berapa pun runcingnya pena kita, garis yang kita bikin itu mesti masih punya lebar. Kita tahu yang punya lebar dan panjang ialah bidang. Garis cuma satu dimensi saja yaitu panjang.
Titik ialah batas garis, satu titik berada di ujung dan yang lain berada di pangkal garis. Suatu titik tak punya ukuran, besaran. Bagaimanapun halusnya ujung pensil kita, titik yang kita bikin di atas kertas tadi masih punya 3 dimensi : panjang, lebar dan tinggi.
Nyatalah sudah, bahwa bidang, garis, dan titik yang kita namakan bukti, tidak seperti bukti biasa yang bisa kita saksikan dengan panca indera kita. Tetapi kita bisa hampiri dengan gambaran, seperti molekul, atom, walaupun dalam teorinya menjadi benda yang tak berbatas kecilnya, asalnya dari benda juga. Kita tak perlu lari ke dunia kegaiban. Bidang, garis, dan titik yang mesti kita dekati dengan gambaran walaupun tidak seperti bintang bagi ahli astronomi atau kuman bagi ahli biologi, bukanlah barang yang semata-mata kosong, nothing, seperti rohani.
Kita bisa mendekatinya dengan gambaran dan bisa menggambarkannya dalam otak. Dan semenjak Rutherford, memang sudah bisa dilihat dengan teropong. Walaupun alam tiada memperhatikan dan jarang sekali memberikan kepada kita benda seperti kubus, silinder, bujur sangkar, lingkaran, segitiga, dan garis lurus, tetapi sebagai hasil dari otak, maka ahli matematika, kaum insinyur dan seniman sudah memberikan bermacam-macam gedung, rumah, dan kesenian yang permai kepada kita. Menambah kesehatan dan mempertinggi peradaban kita.
“Cara berpikir” jitu yang melayani bukti, yang teristimewa masuk dalam wilayah geometri tadi saja juga dipakai dalam memikirkan perkara-perkara lain. Atau cara itu berkenan langsung atau tidak dengan cara yang dipakai untuk melayani perkara di luar ilmu ukur. Sebab itu, cara berpikir dalam ilmu ukur penting sekali buat latihan otak.
KAMU SEDANG MEMBACA
MADILOG
RandomMADILOG Tan Malaka (1943) Sumber: Terbitan Widjaya, Jakarta, tahun 1951. Bab III diambil dari terbitan Pusat Data Indikator, 1999.