Gravedad cuántica

229 7 0
                                    

La teoría de la gravedad cuántica (LQG) plantea que a escalas muy pequeñas el espacio-tiempo está formado por una red de lazos entretejidos en una especie de espuma. Defiende que el espacio no es suave y continuo sino que consta de trozos indivisibles de 10-35 metros de diámetro que constituyen unas partículas de espacio-tiempo. Estos "átomos" del espacio-tiempo forman una malla densa en cambio incesante, el espaciado dentro de la malla es tan pequeño que nos parece ser un continuo. La LQG define el espacio-tiempo como una red de enlaces abstractos que conecta estos volúmenes de espacio, como si fueran los nodos enlazados de un grafo. Las secuencias de enlaces o aristas conforman lazos, los cuales constituyen los bucles de la LQG.

El Big Bang en la teoría de cuerdas

La LGQ se ha asociado a un modelo en el que el Big Bang es precedido por una o varias fases previas de colapso y expansión, en una especie de 'rebote' llamado Big Bounce (Gran Rebote). LGQ permite hacer cálculos y computar lo que puede haber pasado antes del Big Bang, e indican de forma rotunda que antes del Big Bang hubo otro universo que se contrajo y luego, al rebotar, dio lugar al nuestro. Según este modelo cosmológico simplificado basado en LGQ, si retrocedemos en el tiempo, el Universo se hace cada vez más denso hasta que no se puede comprimir más, pasándose luego a una fase de expansión hacia atrás en el tiempo (colapso en el sentido del tiempo habitual).

Las partículas del espacio-tiempo forman una malla densa que cambia incesantemente. A gran escala, su dinámica da lugar a una evolución del universo conforme a lo que dicta la relatividad general. Pero cuando el espacio-tiempo está abarrotado de energía, como ocurrió en el Big Bang, la estructura fina del espacio-tiempo constituye un factor a tener en cuenta y las predicciones de la LQG difieren de las de la relatividad general. La gravedad, en condiciones normales, es una fuerza de atracción. Pero, según se desprende de la LQG, la estructura atómica del espacio-tiempo modifica la naturaleza de la gravedad a densidades de energía muy altas y la convierte en repulsiva.[4] Un espacio cuántico tiene una capacidad finita de almacenar energía, al igual que una esponja porosa tiene una capacidad finita de absorber agua. Cuando las densidades energéticas son demasiado grandes, aparecen las fuerzas de repulsión. La relatividad general considera, por el contrario, que el espacio, además de ser continuo, puede almacenar cantidades ilimitadas de energía abriendo la puerta a la existencia de singularidades (como los agujeros negros o el Big Bang). Debido al cambio cuántico gravitatorio del balance de fuerzas, en gravedad de bucles no puede aparecer ninguna singularidad, ningún estado de densidad infinita. Según este modelo, la materia del universo temprano tuvo una densidad que, aunque enorme, era finita y equivalente a un billón de soles concentrados en el tamaño de un protón. En situaciones tan extremas, la gravedad actuó de modo repulsivo y expandió el espacio. A medida que la densidad se relajaba, la gravedad pasó a ser la fuerza de atracción que todos conocemos. Esta gravedad repulsiva inicial provocó la expansión del espacio a un ritmo acelerado, tal como predicen las teorías de la inflación, las cuales, hoy por hoy, añaden la inflación de forma ad hoc para ajustarse a las observaciones.

Por tanto, nuestro universo sería el resultado del rebote de un universo previo que colapsó bajo los efectos de la gravedad sin pasar por una singularidad. Todas estas preguntas se están. Quizás el estudio en detalle de la radiación cósmica de fondo nos dé pistas al respecto y nos diga si esta teoría va por buen camino. Permitiría someter esta teoría al escrutinio experimental, y corroborar o refutar el modelo de evolución del universo que se infiere de la LQG. Posiblemente esta teoría cosmológica basada en LQG, que se conoce como LQC, afecte a la teoría inflacionaria, y por tanto podrá ser discriminada por observaciones cosmológicas que cada día son más precisas.

Posibles pruebas experimentales de la teoría de cuerdas.

Pruebas de la gravedad cuántica

La trayectoria tomada por un fotón con una geometría discreta del espacio-tiempo sería diferente de la trayectoria tomada por el mismo fotón a través de un espacio-tiempo continuo. Normalmente, tales diferencias deben ser insignificantes, pero Giovanni Amelino-Camelia aclaró que los fotones que han viajado desde galaxias distantes pueden revelar la estructura del espacio-tiempo. LQG predice que los fotones más energéticos deben viajar levemente más rápido que los fotones menos energéticos. Este efecto sería demasiado pequeño para observarlo dentro de nuestra galaxia. Sin embargo, la luz que nos alcanza como explosiones de rayos gamma desde otras galaxias deben manifestar desplazamiento espectral variable en el tiempo. Es decir las explosiones gammas distantes deben aparecer más azuladas al comenzar y terminar más rojizas. Alternativamente, los fotones altamente enérgicos de ráfagas de rayos gamma deben llegar algo más pronto que los menos enérgicos. Los físicos de LQG aguardan con impaciencia resultados de los experimentos espaciales de espectrometría de rayos gamma -- una misión lanzada en febrero de 2007.

Ateísmo Científico Donde viven las historias. Descúbrelo ahora